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THE METHOD OF CONTOUR DYNAMICS FOR AXISYMMETRIC VORTICAL STRUCTURES WITH 
SPATIALLY BOUNDED VORTICITY" 

V.V. KLIMOV and V.L. PROZOROVSKII 

The method of contour dynamics, used in /l/ to describe the 
interaction of plane vortices, is extended here to axisymmetric vertical 
flows. Numerical modelling of the evolution of the simplest contours is 
used as the basis for proposing a hypothesis of the existence of 
periodic, vertical soliton-like structures. 

We base our analysis on the equations of an ideal incompressible fluid written in the 
form %2j& + rot[Ov]= 0, Q = rotv, divv = 0 (1) 

Here v is the velocity field and Q is the vorticity field. In what follows we shall 
consider only axisymmetric flow for which Q = (0, po(p,z), 0} inside certain regions and 
n=o outside them, using a cylindrical system of coordinates. Taking this into account, 
we shall rewrite the first equation of (1) in the form 

-g+u*++v,+o 
We shall assume that 0 (P> 2) is a piecewise constant function, i.e. 

Here yi = const characterizes the intensity of the vortices, and O(Si) is the 
characteristic function of the singly connected region Si whose boundary is described by 
the parametric equations 

P = Pi (Sit t), 2 = zi (ai, 4 (4) 

where ai is a parameter varying along the boundary. In this case we can show that Eq.(2) is 
satisfied identically if 

apiiat = up(pi, zi), az,/at = u,(P~, zi) (5) 

In fact, Eqs.(5) always hold, since they express the well-known Helmholz theorem. 
Thus we have shown that if the distribution of the vorticity is described by the piece- 

wise-constant function (3), it will continue to be described by the same function at sub- 
sequent instants of time, and only the boundaries of the regions will vary. 

We shall now show that, assuming that representation (3) holds, we can express the 
velocity field v in terms of contour integrals over the boundaries of the regions with 
constant vorticity, using universal integrands. 

To do this, we shall consider the last two equations of (1). In accordance with the 
well-known formulas, the solution of these equations decreasing at infinity, has the form 

v = r&A, A = & d8r' ,fz:, 
s 

In the axisymmetric case the vector A, just like 52, has only the azimuthal com- 
ponent A,, so that instead of (6) we obtain 

A,-&ip%p' 1 dr'~drp o(p', 2’) cos p 

0 --Cm 0 [(z-n')'+ p* + p's - Qp'cos ml"' 

3% u =1 a(pA,) 
%=-x' 1 p ap 
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(7) 

--- 
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Substituting expression (31 for w, we obtain 

[(Zi - $2 + 1'2 + pL? - 2ppi cos v]"S) W 

here and henceforth summation is taken from i = ‘l to i = fi. 
Applying Green's formula to (81, we obtain the expression for A,, in the form of an 

integral over the boudaries of the region dSi. Differentiating this result with respect to 
z, we obtain an expression for vg in the form of a contour integral over the boundaries of 
the regions with the universal integrand function (K (p), E (p) are the complete elliptic 
integrals of first and second kind respectively) 

Completely analogous but longer reduction also yields (n is an elliptic integral of 
the third kind) 

Substituting (9) and (10) into system (51, we obtain the final expressions for the 
equations of contour dynamics for axisymmetric flows of an ideal fluid. 

Thus the dynamics of axisymmetric vertical structures is completely determined, under 
the assumption that vorticity 0 is piecewise constant, by the dynamics of the contours 
bounding these structures, so that the problem becomes, in fact, one-dimensional. 

We note that when flows with a velocity distribution differing from (3) have to be 
investigated, they can always be approximated by a finite set of piecewise-constant regions. 
As a result, we can use Eqs.(S), (9) and (10) to describe the dynamics of the vortices with 
any distribution of vorticity over their cross-section. 

Although system (51, (9), (10) is complicated, nevertheless, it can be useful even in 
analytic investigations. For example, in the case of a Kelvin vortex the asymptotic ex- 
pansion in a/R (R is the radius of the vortex ring and a is the radius of its cross-section), 
leads to the well-known expression for the translational velocity of the vortex 121 

where x is the circulation of velocity along the contour. We can find the subsequent terms 
of the expansion in terms a!R in the same manner. 

It should be stressed that system (51, (91, (10) can be used in the search for 
soliton-like solutions of the equations of hydrodynamics in the axisymmetric case. We can 
assume in advance that axisymmetric, soliton-like formations of at least two types exist. 
Firstly, there are vertical formations moving with constant velocity without any change in 
form. The existence of a series of such solutions was shown in /3/. Secondly, we can assume 
that solutions exist in which the region of constant vorticity is in translational motion, 
changing its form at the same time so that after some time T, we can find a vertical region 
which reverted to its initial form, but is displaced by some distance along the s axis. The 
existence of such solutions was shown for the case of the motion of vortex rings in 14, 5/. 
The results of numerical modelling given below also produce favourable indications that 
solutions of this type exist. 

In the general case, when p(z, 2) describes the dynamics of the contour, the solution 
of the second kind can be found by solving the equation 

p(z, t + TO) = pfz - W,, f) (111 

which should hold for any t and for non-zero T,. 
In order to obtain a constructive equation we shall assume that within the class of 

soliton-like solutions of the second kind, solutions exist which can be represented in the 
form of a contour rotating about some centre in translational motion. In this case we can 
obtain, from (ll), the following equation: 



8,: t) (V,_QQZ(S,t)) = ~(vz - v i QP (.%0) 
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Here 9 is the constant angular velocity of rotation of the vortex, V is its constant 
translational velocity, and up and v are given by (9) and (10). 

The solution of Eq.(12), or in more general case, of. (ll), will give, if it exists for 
some V and 9, the form of soliton-like vortices of the second kind. 

Let us now return to the simpler problem of constructing a numerical algorithm for 
solving system (5), (9) and (10) in the case of a single singly connected contour, i.e. for 
N = 1. To do this we shall measure all quantities with dimensions of length in units of R 
(R is the characteristic radius of the vortex), and the quantities with dimensions of time 
in units of %n/(yR). 
will take the form 

As a result, the dimensionless form of the equations of contour dynamics 

the 
the 
the 

In what follows, we shall represent the contour in the form of a set of points lying on 
contour (P (sl), z h); S, = 2; 2 = O,\ 1, . . ., L), and cubic splines approximating the contour between 
points of discretization. The approximating splines were given for Z-I 4s~~ in 
following form: 

P = W-1 (a - S)Z(S - I + If - m* (S - 2 + I)S(l - s) + 

P fW.1) (i - @l2 (s - 0 + 31 + P (sr& - I + l)Y2 (E - 8) + $1 (14) 

(and similarly for 2). Here ml and rn~_~ are the values of the derivatives 8Pi8S at the 
nodes 1 and a- 1, calculated using four-point formulas. Naturally, (14) must be supplemented 
by the conditions of periodicity along the contour. 

Fig.1 

Fig.2 

The contour integrals in (13) were calculated using Simpson's formulas, and the middle 
point was chosen for S= 1---l/, in (14). 

Analysing the integrands in (13) we find that they have singularities on the contour of 
integration. Thus the integrand for vp has a logarithmic divergence at the point (~-p')~l- 
(2 - a')2 = 0 and in order to take it into account correctly the integral is evaluated near 
the singularity analytically. The differential equations with respect to time (13) were 
solved using the Kutta-Meerson method /6/. The well-known fact that the vortex flow is con- 
served across the vortex was used as additional control of the correctness of the method. 

In order to check Eqs.(l3) and their discrete analogue, we first analysed the dynamics 
of the Hill vortex whose exact solution is known. Computations showed that in this case the 
right-hand sides of Eqs.(l3) are calculated with a relative error of E- 10-4 when the 
contour is broken into 100 points. Numerical solution of the differential equations with 
respect to time leads to violation of the theorem of conservation of vorticity Q (A@/@+. 10-3 
per unit of dimensionless time). The accuracy of this part of the algorithm can easily be 
increasing the number of points on the contour, but this also increases the calculation time. 

After checking the correctness of the numerical scheme on the Hill vortex, we considered 
the dynamics of a toroidal vortex whose cross-section was bounded by the contour 

p = R + (a + e sin2 rp,) sin 'p, z = (a + E sins qpo) cos Ip (15) 
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for R = 0.8; a = 0.1; E = 0.05; 0 < 'p < 2~; oa = 3rp/2. 
Fig.1 shows the results of the computations for t = 0; 0.4; 0.8; 1.2; 1.0; 2.0. In order to 

follow the rotation of the contour more easily, one of its points has been marked by a tri- 
angle. The non-conservation of the vortex flux was monitored during the computations, and 
it was found to be sufficiently small right up to the maximum time (t= 2.2). 

We can already observe at t=l the appearance of kinks on the previously smooth 
contour. In what follows, the kinks are replaced by vortex filaments which gradually move 
away from the nucleus of the vortex. 

In spite of the appearance and detachment of vortex filaments (they must naturally be 
represented by a surface), our attention is drawn to the fact that the basic nucleus of the 
vortex (after the separation of the vortex filaments) rotates as a whole, being at the same 
time displaced along the z axis. This fact not only allows us to hope that solutions of Eqs. 
(12) exist, but it obviously also implies their definite stability, manifesting itself in 
the decomposition of the initial vortex into a soliton-like structure of the second kind 
described by Eq.(12) and a set of vortex filaments. The final answer to the question of 
the existence of soliton-like solutions of the equations of contour dynamics can only be 
given by solving Eq.(12), or the more general Eq.(ll). 

To illustrate the possibility of using the equations of contour dynamics for several 
contours, Fig.2 shows the results of computing the evolution of a pair of vortex rings with 
the same values of y, for t ii; 11.1; (!.2. 

Because of the reduction in the dimensions of the problem, the method of contour dynamics 
is fully realizable on a minicomputer. For example, a 32-bit computer performing about 4~10~ 
lengthy operations per second, needs about 30 min to compute a single time step for Fig.1 
(‘II Il.051 
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